
Effects of Robust Convex Optimization on
Early-Stage Design Space Exploratory

Behavior∗

Priya P. Pillai†
Department of Computer Science and Electrical Engineering

Massachusetts Institute of Technology
Cambridge, MA, USA

Email: pppillai@mit.edu

Edward Burnell
Xiqing Wang
Maria C. Yang

Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA, USA
Email: eburn@mit.edu

Email: xiqwang@mit.edu
Email: mcyang@mit.edu

ABSTRACT

Engineers design for an inherently uncertain world. In the early stages of design pro-

cesses, they commonly account for such uncertainty either by manually choosing a spe-

cific worst-case and multiplying uncertain parameters with safety factors or by using Monte

Carlo simulations to estimate the probabilistic boundaries in which their design is feasi-

ble. The safety factors of this first practice are determined by industry and organizational

standards, providing a limited account of uncertainty; the second practice is time intensive,

requiring the development of separate testing infrastructure. In theory, robust optimization

provides an alternative, allowing set based conceptualizations of uncertainty to be repre-

sented during model development as optimizable design parameters. How these theoret-
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ical benefits translate to design practice has not previously been studied. In this work, we

analyzed present use of geometric programs as design models in the aerospace industry

to determine the current state-of-the-art, then conducted a human-subjects experiment to

investigate how various mathematical representations of uncertainty affect design space

exploration. We found that robust optimization led to far more efficient explorations of pos-

sible designs with only small differences in an experimental participant’s understanding of

their model. Specifically, the Pareto frontier of a typical participant using robust optimiza-

tion left less performance “on the table” across various levels of risk than the very best

frontiers of participants using industry-standard practices.

1 INTRODUCTION

Engineering designers use complex computational models to represent a variety of problems,

despite their awareness that the results will not be perfectly recreatable in the physical world. Even

if a model were able to represent a specific problem perfectly, environmental conditions and phys-

ical realities are rarely stable or knowable; for example, an engineer may declare the density of

a metal as a particular value, but in manufacturing the metal supplied will vary from supplier to

supplier and day to day. Beyond material quantities, such uncertainty is also inevitable for envi-

ronmental conditions, assembly quality, and many other important components of performance.

Accounting for such uncertainty is therefore a necessity which designers often represent through

the manual implementation of conservative heuristics.

Convex Geometric Programs (GPs), sets of algebraic constraints globally optimizable for a

specific cost function, are capable of representing a variety of complex systems. Historically, the

inaccessibility of software used to create and solve GPs has restricted their use in engineering

design. The Python package GPkit provides a familiar and clear syntax for geometric programs,

reducing this barrier to entry [1]. Through GPkit, several engineering design firms have adopted

GPs for regular use in their processes, typically to validate the feasibility of innovative conceptual

designs.

At present, GPkit models (along with most other design models) do not provide interfaces
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specifically for the representation of uncertainty. Designers instead set some parameters’ values to

a “reasonable worst case”, often via multiplication by a blanket “safety factor”. Robust optimization

aims to address this by allowing specified uncertainties to be set on parameters, then optimizing

for the best worst-case performance under a given uncertainty set [2]. This method provides more

mathematical guarantees than safety factors do and is more directly translatable to a simulation

environment.

How much these mathematical details affect designers and design practice is unclear. The

marginal improvement in design quality may or may not be worth the effort of changing designer’s

conceptualizations of their model. However, we argue that robust optimization’s potential benefits

come not only from its underlying mathematics, but also from the novel “questions” it lets designers

ask of their models. When uncertainty is explicitly defined in robust GPs, it can be optimized for as

if it were any other variable. This provides a dynamic understanding of uncertainty, encouraging

discussions of robustness earlier in a design process. This study seeks to explore ways in which

robust optimization can affect the practice of creating designs, and provides evidence that robust

GPs improve design space exploration, increasing designs’ quality, quantity, and coverage relative

to an underlying Pareto frontier of optimal tradeoffs.

1.1 Research Questions

Previous work has shown that robust optimization provides a mathematically rigorous method

of accounting for uncertainty [3, 4]. However, its effects on the questions designers ask of their

models has not yet been analyzed. In this study, we ask the following questions:

RQ1 How do designers conceptualize uncertainty? How do particular conceptualizations change

their comfort with robust optimization?

RQ2 How do different mathematical formulations of uncertainty, as represented in a design model,

affect designers’ explorations of possible designs?

RQ3 What design processes do robust optimization tools alter or automate?

Our study had two stages. The first, a series of practitioner field interviews, was used to guide
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the design of the second, a human-subjects experiment in a controlled environment. We address

RQ1 by summarizing how current users of GPkit account for uncertainty in their design processes

and looking at how experimental participants used robust optimization to account for uncertainty.

RQ2 is addressed by analysis of the quality and spread of experimental participants’ solutions.

RQ3 is touched on in comparisons between processes for uncertainty accounting described in

interviews and those seen experimentally, but we anticipate its full investigation to also require

field studies of how robust optimization affects organizational processes.

2 BACKGROUND

A substantial amount of research has been conducted on software tools for design, analysis,

and robust optimization, but the development of particular tools is not our focus. Rather, we are

interested in how designers use these tools and how the choice, application, and integration of

these tools can impact design process exploration. The set of tools we use varies in their handling

of uncertainty and robustness. To better specify this variety, we define uncertainty as variables

listed as a fixed constant in our model having instead a set of possible values. Robustness is the

ability of the design to still function with small perturbations of these fixed variables; the larger a

perturbation that can be handled, the more robust the design is.

2.1 Frameworks for Early Stage Design

Many frameworks exist for early stage design processes for products and engineered sys-

tems, including Pahl and Beitz’ systematic approach to engineering design and Ulrich, et al.’s

widely known process for product design and development [5, 6]. Underpinning both approaches

is the notion of a design specification and/or initial prototype created by an engineering and de-

sign team. The initial prototypes being considered in this study are Python codes using the GPkit

library [1]. The current design specification of these models does not include a method of ac-

counting for uncertainty; we will refer to the additional design specification of uncertainty as the

conceptualization of uncertainty within the model.
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2.2 Design Models

Human participants in engineering organizations use software “design models” to enumerate

parameters of their designs and implement interactions amongst these parameters. Design mod-

els are often made from materials like parameterized CAD assemblies (to construct a shape from

geometric constraints) [7, 8], spreadsheets (to calculate performance) [9, 10], and “mathematical

programs” (to take in a desired performance and put out a design that achieves it) [11].

Design models serve as loci for understanding what will be built, while encoding (and some-

times concealing) decisions on why [12]. This makes them an important arena for intra-organizational

design politics, but just how participants’ perspectives clash and coalesce around these models

depends also on the motif they are part of [7, 13]. Design models express their agency both by

shaping the motif and, within a motif, by determining their outsiders and insiders, spectators and

maintainers, and formal and informal power structures [7,14].

2.3 Design Tools and the Designer

Software tools, most notably CAD, are essential to design and production, and a number of

studies have considered the impact of these tools on early stage designs. In the exploratory

phases of design, studies with practicing engineers and student designers have observed that the

use of CAD too early in the design process can have a negative effect on design creativity, known

as ”premature fixation” [12,15]. High fidelity digital tools require more time and effort on the part of

the designer than lower fidelity tools, making designers more invested in a design and less likely

to discard it. This is an observation of not only the design tool, but the way that designers use

the tools in practice [16]. Our study takes a similar designer-focused perspective on exploration

using a design tool by formulating a constrained but realistic design problem with minimal interface

complexity. Our design tool is GPkit, and we investigate the effect of a more detailed but potentially

confusing mathematical model of uncertainty on the ability of users to find optimal solutions using

this tool. The exact mathematics behind how uncertainty is calculated will be referred to as the

formulation of uncertainty.
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2.4 Design Optimization and the Designer

An overarching goal of design optimization research is to create tools and systems that can

support designers by generating the “best” solutions by searching through the set of all possible

solutions, or the design space. The majority of research in design optimization concentrates on

the development of better and faster algorithms and strategies, and only limited research has been

conducted on how designers themselves reach globally- or locally-optimal solutions, and how this

is affected by their tools.

In an early study of how humans deal with coupled problems, Hirschi and Frey compared the

time to solve coupled and uncoupled parametric design problems [17]. For uncoupled problems,

the time to solve was of the order of O(n) where n is the number of input variables, and increased

dramatically to O(n3.4) for coupled problems. Notably, coupled problems with more than four

variables were found to be very difficult and frustrating for the participants. Similarly, human studies

by Flager et al. showed that an increase in problem complexity caused a significant decrease in

solution quality [18]. A study by McComb et al. showed specifically that more complex 2D trusses

led to worse performance [19]. Austin-Breneman et al. found that, despite domain expertise

and optimization training, graduate students asked to collaboratively design a simplified satellite

had trouble exploring the design space because of the complexity of subsystems and subsystem

interactions, and few teams found designs on the Pareto-optimal frontier [20]. In interviews with

space system designers, it was found that teams in industry routinely restricted the information

shared with each other in ways that made exploration much more difficult both in practice and from

the perspective of optimization theory [21]. Yu’s study of desalination systems found that software

choices could enable novices to explore complex system designs almost as well as experts, with

some caveats [22]. Designer satisfaction with rapid prototyping process has been explored by

Neeley, et al., who found that designers tended to be more satisfied with design outcomes when

given the opportunity to explore more design space initially [23]. Specific questions of how real-

time interfaces affect design outcomes were present in the first direct-manipulation CAD software

[8], in early studies of the effect of analysis speed on structural design exploration and outcomes

[24], and in more recent research on human-computer optimization in circuit-routing [25] and in
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architectural design [26].

We hope to extend such studies by directly measuring the effects of real-time software deci-

sions and algorithms on design outcomes and process. Previous studies by Barron et al. and

Egan et al. [27, 28] have looked at the effects of visualization and search techniques in custom

tools that use different visual representations and search strategies than designers may be accus-

tomed to; in contrast, our study uses familiar visual representations and interaction modalities but

changes the conceptualization and formulation of the design problem. Since this design problem

has two goal parameters, we define “optimality” in terms of the Pareto frontier—a subset of the

possible solutions such that each solution on the Pareto frontier is either better in the first goal

parameter or the second goal parameter compared to any other solution.

2.5 Geometric Programs

Geometric programs are nonlinear optimization problems of a set of posynomial constraints

and a cost function known as the objective. A posynomial is a sum of monomials, where a mono-

mial is a set of variables raised to any positive real power multiplied together with a positive coef-

ficient. Formally, a posynomial p(x) can be defined as

p(x) =
K∑
k=1

ck

n∏
j=1

x
aj,k
j (1)

where x is a vector of all variables, n is the length of x and therefore the number of variables, K is

the number of monomials, all ck are positive real numbers, and all aj,k are real numbers [29].

A geometric program is defined by minimizing a posynomial objective function subject to

posynomial constraints that must be less than or equal to some positive value. Geometric pro-

grams have the practical feature that, when transformed logarithmically, they become convex,

guaranteeing only one local minimum exists-the global minimum. This allows for gradient descent

in log-space to always find the globally optimal solution. GPkit serves as a Python interface for

geometric program solvers such as MOSEK and cvxopt [30, 31] that allows users to define these

objectives and constraints intuitively. It then can solve for the optimal solution and can visualize the
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structure of the models and the feasible solution space. GPkit has enabled engineering designers

who are not experts in mathematical optimization to create, solve, and understand GP models

by black-boxing computational details and providing diagramatic representations of the underlying

mathematics. If negative ck values are necessary, a signomial program can be used, which can

be optimized via multiple geometric program approximations.

2.6 Robust Convex Optimization

μs
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↓γγσs

γσr

Takeoff Speed

R
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g
e

x

Fig. 1. Elliptical Uncertainty

µr is the expected range, σr is the standard deviation of possi-

ble ranges, µs is the expected takeoff speed, σr is the standard

deviation of possible takeoff speeds. In robust optimization, each

design’s worst case of the range of possibilities in the ellipse is

found, and the design with the optimal “worst case” is chosen.

Increasing γ accounts for more uncertainty by scaling up the

ellipse, as γ is a multiplier of the standard deviations.

While geometric programs are highly gener-

alizable, they run the risk of being overly spe-

cialized solutions relative to the uncertainty that

exists. To account for that uncertainty, Robust,

an add-on GPkit package, allows for the inclu-

sion of standard deviations on each variable, as

well as an overall “Gamma” factor (γ) that scales

the amount of uncertainty accounted for, then

optimizes the worst point of a region of uncer-

tain parameters. The region can either account

for a certain number of standard deviations of

each parameter (”rectangular” uncertainty) or of

a combination of all parameters (”elliptical” un-

certainty). A visual explanation of elliptical un-

certainty is in Figure 1. This process is generally

known as robust optimization. Work on Robust

has shown that the current standard of multiply-

ing each uncertain variable by a margin does not take into account the worst combined case math-

ematically, and that robust optimization is necessary to fully account for uncertainty [3]. While the

quantitative case for Robust has been made, the question of how this affects the overall design

process, particularly in the context of design space exploration, has not yet been answered.
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3 PRACTITIONER INTERVIEWS

This study was divided into two stages. The first exploratory stage—practitioner interviews—

produced qualitative data on Robust adoption’s benefits, risks, obstacles, and conditions. From

the information gathered in these interviews, we designed the experimental second stage to ad-

dress the concerns raised and to provide these users with further guidance on how and when to

incorporate robust optimization into their existing models.

3.1 Methods

Table 1. Practitioner Demographics

Each column represents an interviewed practitioner, each row

a trait. An “X” indicates that the practitioner has this trait. “De-

veloper” means they have been involved in GPkit’s development

process; “Designer” means they have created GPkit models as a

part of a longer product development process. “Academic” and

“Commercial” refer to the contexts in which the practitioner has

worked with GPkit. “Experienced” refers to having multiple years

of experience using GPkit.

1 2 3 4 5
Developer X X
Designer X X X X

Academic X X X X
Commercial X X X
Experienced X X X X

To understand current practices of account-

ing for uncertainty in design models, we inter-

viewed five GPkit users with a flexible question-

naire focusing on how they accounted for uncer-

tainty within their models. Each of the five in-

terviews lasted for half an hour to an hour and

took place off campus, either at the intervie-

wee’s place of work or at a public location like

a coffee shop. Interviewees varied in the extent

of their experience with GPkit, their interactions

with GPkit (developers versus designers), and

their affiliations (academic versus commercial),

though all were in the field of aerospace, where

most GPkit models are made; a detailed break-

down can be seen in Table 1. First, we asked

about each designer’s work to encourage engagement in the conversation and to understand their

background. We then explored the workflows of their projects before and after using GPkit, asking

them to speak of particular projects to ground their answers. We then asked more targeted ques-

tions about uncertainty, looking for specific methods. Finally we asked broadly about inefficiencies

they had encountered while modeling, to understand how salient issues surrounding uncertainty

are relative to other concerns. Conversations were analyzed using open coding.
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These interviews were the backbone of our experimental design for the second stage, for we

based its guiding questions on the concerns expressed by those interviewed.

3.2 Results

When we asked interviewees how they accounted for uncertainty during conceptual stages of

design, we received two responses: either they 1) multiplied uncertain parameters by a margin or

safety factor of 20% (considered an industry standard) or 2) did not account for uncertainty at those

stages. Some interviewees mentioned checking if their design was robust to small perturbations

in environmental conditions via Monte Carlo simulation, but usually as a final check of a model’s

solution, not during model development. Most interviewees believed they should be accounting

for uncertainty, but did not consider it a priority due to a perceived lack of social pressure to do so;

if none of their peers were trying to account for uncertainty, why should they? Almost everyone

interviewed considered uncertainty quantification an important problem, but also thought of it as

intractable and impractical.

Interviewees discussed how safety factors can lead a design to be incorrectly seen as infea-

sible. One talked in particular about electric airplanes, much of whose mass rests in their battery.

Putting a safety factor on total airplane weight increases the amount of battery needed, which

increases the total airplane weight; the process converges, but often leaves a design looking im-

possible. Therefore, instead of weight safety factors, this interviewee accounted for excess weight

by making the allowable payload a maximized free variable, even though this makes it more difficult

to design for an exact payload.

Deciding on a model’s objective function—the parameter it optimizes for—was described as

the “single most important choice” of modeling. In robust optimization, uncertainty can be the

optimized parameter. This allows for different conceptualizations of a design problem. With the

electric aircraft above, instead of calculating the battery size required to handle 20% extra weight,

designers might use robust optimization to calculate the maximum level of uncertainty allowable

for an airplane capable of carrying a specific payload.

That our interviewees used GPkit primarily during conceptual design stages made the detailed

accounting for uncertainty of robust optimization seem less necessary to them. In order to use ro-
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bust optimization, they would have to create models with increased complexity in both concept

and form, more difficult to interpret and to code. Some practitioners were additionally skeptical

that doing so would significantly improve conceptual designs, as the uncertainties known at such

an early stage felt more “made up” than other design parameters. While they found current un-

certainty accounting practices to be more arbitrary, they felt that the specific uncertainty values

they would choose in robust optimization might be just as arbitrary without the benefit of follow-

ing industry standards. This formed the question for our human-subjects experiment: can robust

optimization be useful (in comparison to current practices) even with guessed parametrizations of

uncertainty?

4 HUMAN-SUBJECTS EXPERIMENT

This experiment provided a direct comparison between methods of accounting for uncertainty

with different computational models. We wanted in particular to see how additional uncertainty

information mathematically encapsulated in models might shape designer’s practices.

4.1 Methods

Forty-three graduate and undergraduate students in science and engineering at a US univer-

sity were recruited to individually participate in a design challenge using a custom built graphical

interface for a GPkit design model. Participants were prompted to choose parameters for an air-

plane design which led to designs with both as low a failure rate and as low a fuel consumption as

possible. They were tasked with finding designs in three “reward regions” and to find designs on

the final combined Pareto frontier; participants received greater compensation depending on their

performance on these metrics. Each participant was given a ten minute tutorial, thirty minutes to

complete the design challenge, and ten minutes to complete a short survey about their experience

using the tool after the experiment , based on surveys used in similar experiments [32]. The code

used for this experiment is available in an open source GitHub repository1.

4.1.1 Experimental Interface

1https://github.com/convexengineering/robust_experiment
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Fig. 2. Mock-up of Experimental UI

The three reward regions highlighted in the plot are designs with

a fuel consumption below 1100 lbs (in blue), designs with failure

rate below 10% (in yellow), and designs with both a fuel con-

sumption below 1200 lbs and a failure rate below 30% (in green).

The ordering of participant’s designs was tracked through a line,

with the most recent points in bright pink and older points in dark

purple. A screenshot of the actual UI is in Appendix B.

The graphical interface shown in Figure 2 al-

lowed users to directly modify a small set of pa-

rameters with sliders (A), then optimized a de-

sign based on those parameters and presented

its fuel consumption (performance) and simu-

lated failure rate. Participants kept track of the

history of their designs with a plot of each de-

sign’s fuel consumption and failure rate (B), a list

of parameter combinations they’d tried that led to

infeasible designs (C). The three reward regions

were also shown on (B), providing a visual re-

minder of their goals. Additionally, participants

saw the planform of their most recent airplane

design (D). Sliders had discrete step values, but

allowed arbitrary precision via typing. Fuel con-

sumption was evaluated by solving the GPkit de-

sign model for the input slider values, while failure rate was determined by checking the model’s

feasibility across a set of one hundred randomized conditions; conditions were sampled from a

multivariate truncated Gaussian probability distribution. A fixed set was used for all participants

to enable comparability between the failure rates of various designs. This method of determining

failure rates is similar to best-practices Monte Carlo simulations.

The design model underlying this graphical interface was based on the “SimPleAC” GPkit

model for passenger aircraft, [33] itself a condensed version of previous GPkit models for com-

mercial aircraft [34, 35] that had been co-developed with the robust optimization library [3]. While

SimPleAC relies on approximately forty different variables to minimize the fuel consumption, par-

ticipants were only given control of four to five variables. This simplified the task to allow novices

to perform it within an hour. The invisible variables and constraints then served as a black box,

making behavior of the model difficult to predict. While expert users would have access to this in-
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formation, they too would not easily be able to intuitively predict changes in model behavior without

running the simulation due to the mathematical complexity.

4.1.2 Experimental Conditions

Table 2. Variables by Condition

Control users directly manipulated four physical design param-

eters of the airplane, while Margin, Gamma Slider, and Perfor-

mance Slider users directly manipulated parameters which ac-

counted for uncertainty. While Margin, Gamma Slider, and Per-

formance Slider were able to modify variables accounting for un-

certainty, these variables did not exist in the Control model; Con-

trol’s variables are directly optimized for in the other conditions.

Control Margin
Gamma
Slider

Perf.
Slider

N/A Gamma Perf.
Wing Length Wing Weight Uncertainty
Wing Area TSFC Uncertainty

Fuel Volume
Available

Takeoff Speed Uncertainty

Lift Coefficient Range Uncertainty

Subjects were randomly partitioned into the

four experimental conditions: two conditions

similar to existing practices (Control and Mar-

gin), and two using robust optimization (Gamma

Slider and Performance Slider). A breakdown of

participant demographics can be found in Table

3. Participants using Control chose design pa-

rameters such as wing size; those using Mar-

gin chose safety factors, those using Gamma

Slider chose the precise shape and scale of

the uncertainty region they were optimizing for,

while those using Performance Slider, chose the

shape of that region and a desired performance,

letting the optimizer maximize the scale of the

uncertainty region. A list of variables modified

by experimental condition can be found in Table 2. The uncertainty region was set to be ellipti-

cal, which represents a percentage of combined uncertainty being accounted for. Both Control

and Margin represent current design practices: Control simulates common practices with non-

optimizing design models, while Margin simulates current practice with GPkit models. Gamma

Slider and Performance Slider represent the intended design practices Robust enables. Control

is less directly comparable to the other three conditions; since it does not account for uncertainty,

there are no equivalent variables for it. It is included to represent the most common engineer-

ing design practice. The additional variable in Gamma Slider and Performance Slider may have

increased the difficulty of the design task [17], but we wanted to account for the added difficulty

of robust optimization practice in comparing these conditions. We expected to see improvements
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to design space exploration coverage and quality with robust optimization despite the additional

complexity.

Control users saw the fuel consumption of their designed airplane in the context it was opti-

mized for, while users of the other design models saw performances which “priced in” uncertainty.

Since the reward regions were identical across conditions, a larger fraction of possible designs

Control users were able to find appeared in these regions. This kind of biased comparison is com-

mon in robust optimization practice. To compare performance across conditions during the anal-

ysis, designs made in non-Control conditions were “nominalized” by recalculating performance of

each design in the nominal conditions Control designs had seen.

4.2 Results

Table 3. Participant Demographics (self-reported)

Conditions were randomly assigned without stratification.

Control Margin
Gamma
Slider

Perf.
Slider

n = 10 11 11 11
Gender
Female 4 4 4 9
Male 6 7 7 2
Education
Freshman 0 2 0 1
Sophomore 4 2 2 1
Junior 1 2 0 1
Senior 1 1 3 3
Masters 2 2 3 2
PhD 2 2 3 4
Department
CS 3 4 3 3
Aero 4 3 4 3
Mech E 2 3 3 4
Other/None 1 1 1 1

Prior to analyzing the quantitative data

of the experiment, we assessed our over-

all impressions of each of the conditions

from piloting and from informal conversa-

tions with participants after the human-

subject experiments. These conversa-

tions provided us with additional informa-

tion that participants preferred to convey

verbally rather than formally write in the

survey. Participants in the Control condi-

tion seemed to have the most direct un-

derstanding of how or why their parame-

ter changes affected performance and fail-

ure rate, especially if they had some expe-

rience with airplane design. Participants

in the Margin condition found their designs

highly sensitive to even small parameter

changes; it seemed easy to accidentally
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go to extremes with this tool. For both Performance Slider and Gamma Slider participants, it

seemed difficult to find designs far away from the Pareto frontier. Performance Slider participants

could, by keeping the performance slider consistent, constrain their motion on the results plot to

a single vertical line, allowing them to separate dimensions inextricably linked for other users.

Gamma Slider participants could, by keeping their standard deviations constant and only mod-

ifying the size of their uncertainty set, move along a single curve. While all conditions worked

with four coupled variables, the addition of a uncoupled variable appears to have simplified the

design task by reducing its dimensionality. Being able to act in only one “dimension” in these

ways seemed to make the challenge less stressful for both Gamma Slider and Performance Slider

participants.

"You felt like you were choosing new design points arbitrarily, without a plan."

"You felt fully in control during the design task."

"You felt frustrated during the design task."

"You felt stressed during the design task."

Fig. 3. Results from Post-Experimental Survey

A six point Likert scale was used to evaluate the emotional reac-

tion of participants to the experimental set up. Participants filled

out the post-experimental survey immediately after finishing the

experiment. Due to small sample size, no statistical significance

was found using a pairwise T-test.

To see if these impressions were validated

by our data, we analyzed qualitative results from

the post-experiment survey, which gave partic-

ipants a set of statements and asked them to

rate how much they agreed or disagreed with

each on a six point Likert scale (Figure 3). Com-

parisons between Control and other conditions

were biased by Control’s easier access to the

goal regions; given this, the fact that Control

felt less stressed and frustrated than most other

conditions is unsurprising. Between other con-

ditions, we saw differences in the amount partic-

ipants felt like they “had a plan”, were “in con-

trol”, were “frustrated”, or were “stressed”. As

expected, robust optimization conditions were

mildly less stressful and frustrating than Margin.

However, Gamma Slider participants felt the least like they had a plan and were in control. This

may indicate confusion about the “Gamma” parameter, which, as a robust optimization specific
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term, was unfamiliar. Despite this, Gamma Slider participants had the highest quality solutions of

all conditions. Even without feeling they understood what they were doing, Gamma Slider partici-

pants were able to find high quality designs.

*

*
*

*
*

*
*

Fig. 4. Summary Statistics

Significant differences (Pairwise t-test with Holm–Šidák correc-

tion, p < 0.05) indicated by an asterisk. “Points” refers to

the number of feasible designs generated by each participant

within thirty minutes. “% in R.R.” refers to the percent of nom-

inalized designs per participant that were in any of the regions

with financial incentive. “Pareto” refers to the average number

of points found by each participant in each condition that were

on the combined experimental Pareto frontier across all con-

ditions. n = 11 for all conditions except Control, in which

n = 10. Shaded region shows the distribution for each condi-

tion, darker between the 25th and 75th percentiles. Black dots

show medians. ANOVA testing shows significance in all (Points:

p = 0.036, % in R.R.: p < 0.001, Pareto p = 0.006).

The rest of this section quantitatively com-

pares solutions across all four conditions. The

design challenge incentivized participants not to

find an optimal solution given a single goal, but

rather to find a Pareto frontier of optimal so-

lutions in terms of two goal parameters, per-

formance and failure rate. To statistically ana-

lyze the influence conditions had on design out-

comes, we compare the quantity of high qual-

ity points found in Figure 4. The metrics of

Pareto points and combined Pareto points serve

as proxies for how much of the space was cov-

ered; the percent inside reward regions serves

as a proxy for design quality. We see significant

differences between robust optimization meth-

ods and standard methods in these metrics, pro-

viding evidence for the hypothesis that robust

optimization encourages more exploration of op-

timal designs and increases the quality of each

design explored. The effect sizes of robust con-

ditions versus margins and control are also quite

large—all statistics have a Cohen’s d statistic of 0.7 or higher, with the percent of points in the re-

ward region having a Cohen’s d statistic of over 2.

The number of points metric is an indication of how much exploration participants were willing

to do given specific tools; the large number of points in robust conditions indicates that exploration
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was faster and/or participants were more willing to explore. The end times did not show significant

differences, as there was no incentive to finish early. The tool itself did not take additional time

to run in the Control or Margin conditions—in fact, it may have been slightly slower in the Robust

conditions. The Control condition, where the reward regions were the easiest to achieve, provided

less financial incentive to explore, which may have discouraged exploration. However, the Margin

condition rated as slightly more stressful and frustrating due to its lack of predictability; participants

may have been disincentivized to explore by stress or frustration, or may have required more time

to determine the next point to test. A benefit of robust optimization may be either reduced stress

and frustration or more intuitive changes in design quality, both leading to increased iteration.

We parametrize a design’s quality with two dimensions: the improvement in failure rate that

could have been achieved for that design’s performance (vertical distance on the following plots),

and the improvement in performance that could have been achieved for its failure rate (horizontal

distance). In both cases, designs were compared to the final combined Pareto frontier achieved

by other participants. Figures 5 and 6 show the distribution of these distances across participants’

Pareto frontiers. Because we used the same reward regions across conditions, the difficult central

region became therefore a focal point for some participants, as can be seen in the compression of

their distribution at that point. With normalized performance, Control and the least-performant half

of Margin participants are clearly separated from the combined frontier, while other participants

are quite close.

To see the differences between the Pareto frontiers achieved by participants under condition,

we summarize each individual frontier by its average vertical distance (Figure 7) and horizontal

distance (Figure 8). We consider individual’s frontiers all together instead of each of their points

because such frontiers are the primary output of design model use, not a particular design point.

That is, our simplified framework for the use of these models in a design process is 1) a condition

is selected, 2) a Pareto frontier created, and 3) a condition is chosen from that Pareto frontier

based upon the whole frontier.

Figure 7 shows the distributions of excess failure rates (average vertical distance) across the

frontiers made with each condition. There is a clear distinction between Control and Margin, and
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Solid lines show median of participants’ Pareto frontiers after

nominalization. Shaded regions extend above it to the 75th per-

centile and below to the 25th. The black dashed line shows the

combined final Pareto frontier, while solid black lines indicate re-

ward regions.

1000 1100 1200 1300 1400 1500 1600 1700
Fuel consumption [lbs]

0

10

20

30

40

50

60

70

Fa
ilu

re
 ra

te
 [%

]

Control
Margin
Gamma Slider
Perf Slider

Fig. 6. Distribution of Failure Rates

Solid lines show median of participants’ Pareto frontiers after

nominalization. Shaded regions extend to its right to the 75th

percentile and to its left to the 25th. The black dashed line shows

the combined final Pareto frontier, while solid black lines indicate

reward regions.
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Fig. 7. Average Excess Failure Rates

Significant differences (Pairwise t-test with Holm–Šidák correc-

tion, p < 0.05) indicated by an asterisk. Shaded region shows

the distribution for each condition, darker between the 25th and

75th percentiles. Black dots show medians. ANOVA testing

shows significance across conditions (p < 0.001).
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Fig. 8. Average Excess Fuel Consumptions

Significant differences (Pairwise t-test with Holm–Šidák correc-

tion, p < 0.05) indicated by an asterisk. Shaded region shows

the distribution for each condition, darker between the 25th and

75th percentiles. Black dots show medians. ANOVA testing

shows significance across conditions (p = 0.007).

between both of them and the two robust conditions. Figure 8 shows the distribution of excess

fuel consumption (average horizontal distance) across conditions. The frontiers of median users

of the robust models perform better by this metric than the best users of Margin and Control, and

every user of robust models performs better than three quarters of Control users. Effect sizes
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as calculated by the Cohen’s d statistic are all greater than .9 between robust and non-robust

conditions.

5 DISCUSSION

These results are evidence that robust optimization can increase design quality. Returning to

our fundamental research questions, what do they imply about the effects of conceptualizations

and formulations of uncertainty, and what current design practices might robust optimization alter

or automate?

5.1 RQ1: Conceptualization of Uncertainty

From practitioner interviews we found that uncertainty conceptualization in the early stages

of airplane design is minimal, partly because uncertainty is considered fruitless to estimate by

our interviewees when the overall design is rapidly changing. However, we found two types of

uncertainty were being mixed together: 1) uncertainty related to changes that were part of the

design process, and 2) uncertainty related to the range of possibilities the final design might face.

The conceptual merging of these meant that designers who did not think they could account for

the first type, also thought they could not account for the second. For robust optimization to be

used in conceptual design, it must make clear it is formulated for the second type.

Given that designers at this stage do not often conceptualize this second type of uncertainty,

how might they adopt robust optimization? Experimental participants in the robust Performance

Slider condition felt most like they “had a plan”; Gamma Slider participants felt least like they had

a plan. This implies that, for non-expert users, the terminology of robust optimization (present in

Gamma Slider as the “Gamma” factor, but absent in Performance Slider) may be a barrier to entry.

However, the concept of optimizing for uncertainty, present in both conditions, did not seem to

hinder understanding (using “felt like they had a plan” as a proxy). For GPkit users trying robust

optimization, we would expect the transition to be eased by parallels between the conceptual-

ization of uncertainty in robust optimization and uncertainty questions already asked later in the

design process. The Performance Slider condition is analogous to finding the most robust de-

sign possible for a certain performance; the Gamma Slider condition is analogous to finding the
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most performant design possible for a specific uncertainty set. The additional complexity of design

models in practice and the lack of GUI-based abstraction may limit the generality of these results.

5.2 RQ2: Formulation of Uncertainty

The current process of GPkit model creation does not encourage a rigorous formulation of

uncertainty. Practitioners discussed multiplying uncertain fixed variables with industry-standard

safety factors, but this method seemed more of a default practice rather than one engaged with a

conceptualization of uncertainty.

In our experiment, the Control condition had no formulation of uncertainty, the Margin condition

encapsulated uncertainty in safety factors, and the robust optimization conditions encapsulated

uncertainty in relative standard deviations. Results showed participants in Control and Margin

were far worse at finding Pareto optimal points than participants in robust optimization conditions:

75% of robust optimization frontiers were better than the median frontier of the other conditions.

Additionally, formulating uncertainty as a directly controllable variable seems to have reduced the

quantity of suboptimal designs explored.

In this simplified design challenge, the model’s formulation was abstracted away from the par-

ticipants. In practice, users of GPkit would need to understand robust optimization well enough to

create these models on their own. While Robust was designed to only require a small amount of

additional code, the mathematical increase in understanding needed to create such syntax was

not accounted for within this study. It remains to be investigated as a possible obstacle to usage

of robust optimization in GPkit.

5.3 RQ3: Automated Design Processes

Our experiment was designed to represent both designers’ present design exploration pro-

cesses and the potential processes of robust optimization. Our failure rate simulation was meant

to mimic a designer testing their design, either through Monte Carlo simulation, more complex

computational modeling, or prototype creation. In this study, this failure rate simulation formed

the “ground truth” of the participants involved; in practice, the ground truth could not be so easily

discovered at this stage. A simulation similar to ours would serve as an early check in the design
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process, rather than the final one.

Current design processes were emulated by the Control and Margin conditions. Control emu-

lated the process of manually setting design parameters without use of optimization, as is common

in conceptual aerospace design. Our results find that, while it is possible to find high quality so-

lutions this way, it is difficult to do so consistently. Our Margin participants emulated the process

of specifying safety factors within an optimization framework such as GPkit. Margins are not so

flexibly set in practice. Instead, they are generally fixed at an industry-standard value. Similarly,

simulations to check failure rates are more generally performed after a solution has been decided

upon, not during a single designer’s rapid iteration through designs. Both the Margin and Control

conditions of our experiment put current practices on a much faster timescale; caution should be

taken equating these results with current design practices. The optimization involved in Margin,

as well as the ability to control uncertainty parameters, led to higher quality designs than those

of Control participants, though Margin participants were still able to find poor quality designs far

away from the Pareto frontier.

Judging just by what participants saw on their screen, the Control case had an easier time

reaching the reward regions. However, this is due to the method in which uncertainty is incor-

porated into the mathematical model—since the uncertain variables are directly modified to be in

their worst case of the uncertainty accounted for, the performance given by the model is the per-

formance under worst case conditions. We presented this performance to participants to better

simulate how designers would view each tool. To be able to compare the underlying data how-

ever, we needed to “nominalize” the data, which meant rerunning the model with optimized fixed

design parameters with uncertainty parameters set to the nominal values used by the Control con-

dition. This workflow on the experimenter’s part implies the need for an automated functionality to

compare designs optimized for various conditions; practitioners also noted the need to easily test

performance on “off-design” cases.

The Gamma Slider and Performance Slider conditions mimic two ways designers could use

robust optimization to explore the design space, and the consistent quality of their Pareto fron-

tiers implies that the methods can produce a high likelihood of Pareto optimality without requiring
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much skill. Given the mathematical formulation of robust optimization, this is no surprise. A ran-

dom sample of conditions is an approximation of the bounds robust optimization is designed to

optimize for; the failure rate returned by the random sample is a less accurate representation of

how much uncertainty is accounted for than the robust optimization’s own parameter bounds. This

turns the experiment into a game of finding uncertainty parameters that overfit the controlled set

of one hundred random samples. A designer mimicking this process in practice would set the

bounds of both the Monte Carlo simulation and the uncertainty parameters of robust optimiza-

tion; however, a probabilistic simulation analysis does not make sense if the designer can choose

the space of uncertainty optimized for. Robust optimization automates away the mathematical

necessity of performing Monte Carlo simulations over direct design parameters. In practice, we

would expect Monte Carlo simulations to still be used to provide additional legitimacy to designs for

stakeholders with less familiarity with robust optimization practices, and for uncertain parameters

not representable within a convex model.

Robust optimization’s most apparent advantage becomes clearer later in the design process—

the expressivity it provides designers to build models that are detailed mirrors of their project-

specific conceptions of uncertainty. However, this potential benefit would require a change in how

GPkit is used; while some designers wanted to continuously update GPkit models as their designs

proceeded past the conceptual stage, they felt little ability or incentive to do so, as their coworkers

usually trusted more complex “high-fidelity” to be more legitimate.

Trust in GPkit models of various designs does need to be built; not many designers would be

willing to use the values determined as optimal directly from a GPkit solve without first validat-

ing the model in other software. However, late-stage GPkit models have been able to accurately

predict the performance of an airplane prototype, such as with the Jungle Hawk Owl [36, 37],

whose designers built a plane fully modelled in GPkit, and found their built performance remark-

ably close to model estimates. However, to encourage adoption of robust optimization in GPkit,

improvements in design quality must be evident even at early conceptual stages. This study pro-

vides evidence that robust optimization can have a dramatic effect, even with a simple conceptual

model.
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6 CONCLUSION

This study provides evidence for the importance of accounting for uncertainty early in the

design process. A lack of uncertainty formulation within a design model can require external, im-

perfect metrics of uncertainty testing, such as Monte Carlo simulations, and the iteration modeling

process is thus less likely to produce high quality designs. Simple uncertainty formulation within

a design model, such as multiplying a variable by a safety factor, can create overly conservative

designs or make worthwhile designs appear infeasible. However, most designers do not know

alternative methods of accounting for uncertainty, or consider those methods to be impractical for

conceptual design.

Robust optimization provides stronger protections against uncertainty than safety factors, mak-

ing it difficult for even inexperienced users to create non-robust designs. This is seen through

the high quality of almost all our experimental participants’ final designs relative to the combined

Pareto frontier. We also provide two conceptualizations of uncertainty GPkit users could use ro-

bust optimization to represent. The first, represented by Performance Slider, is optimizing for the

largest scaled uncertainty, creating an airplane that is as robust as possible for a particular per-

formance. The second, represented by Gamma Slider, is optimizing for performance, creating an

airplane that maintains a particular level of robustness while spending little on fuel. GPkit users

who already consider uncertainty via Monte Carlo simulations of their designs will find robust

optimization essentially automates the function of Monte Carlo simulation within it, reducing the

necessity of running additional simulations on designs.

The human-subjects experiment was a game for novices, and so does not allow us to draw

conclusions about how designers in practice might behave. However, even though robust optimiza-

tion uncertainty parameters were difficult to understand conceptually, this barrier did not prevent

novice participants from finding high quality solutions. The experiment also provides questions

for future field studies: Do explicit formulations of uncertainty enable better conversations about it

during conceptual design? How do multiple stakeholders interact with these tools and solutions to

reach an agreement? Do the benefits found in this study extend to more complex solutions? How

difficult is it for designers to transition from formulating uncertainty as safety factors to skillfully
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using robust optimization? Answering these questions will allow us to understand the potential of

robust optimization as a method for accounting for uncertainty.
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APPENDIX A: QUESTIONNAIRE FOR INTERVIEWS

Questions were grouped into three broad categories:

(A) Background/General

(B) Integration/Communication

(C) Robustness

Questions were given approximately in this order, allowing for flexibility given the natural flow

of conversation.

1. Tell me about the projects you are working on and your role within them. (A)

2. How and why did you start using GPkit? (A)

3. Think about a project you did that could have used GPkit, but didn’t.

(a) Why did the project not use GPkit? (A)

(b) How did you integrate and optimize your systems? What tools did you use to integrate

and optimize your systems? (B)

(c) How long did the design process take? How many early stage iterations (i.e. early simula-

tions) did you go through? How many late stage iterations (i.e. more detailed simulations,

built objects) did you go through? (C)

(d) How closely did early simulations match the final object? (C)

(e) How many people were involved? How were they organized? (B)

(f) How did you evaluate the quality of your design during the process? After it was complete?

(C)

4. Think about the last project you did with GPkit.

(a) What stages of the project did you use GPkit during? (B)

(b) How did you use GPkit to integrate and optimize your systems? What processes did GPkit

replace, and which ones did it not replace? (B)

(c) What tools did you use in addition to/before/after GPkit? (B)

(d) How long did the design process take? How many early stage iterations (i.e. early simula-

tions) did you go through? How many late stage iterations (i.e. more detailed simulations,
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built objects) did you go through? (C)

(e) How closely did early simulations match the final object? (C)

(f) How many people were involved? How were they organized? (B)

(g) How did you evaluate the quality of your design during the process? After it was complete?

(C)

5. Of the differences in the two projects we mentioned, which ones were related to GPkit? (A)

6. If you haven’t used GPkit in major projects, why? (A)

7. What do you view as benefits of GPKit? (A)

8. What do you find to be lacking in GPkit? What features would you like to be added? (A)

9. What qualities of a project do you find make it better suited for GPkit? (A)

10. How do you moderate uncertainty? (i.e. do you prioritize accuracy in measurements of certain

components versus others?) (C)

11. How do you encode uncertainty information into GPkit? (C)

12. How does your initially designed model translate into the final built structure? What things

change? How often are you re-solving your model/modifying the design? (C)
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APPENDIX B: EXPERIMENTAL UI

Fig. 9. Experimental UI

Screenshot of interface seen by participants of the human-subjects experiment. The interface was creating using Jupyter Notebook,

ipywidgets, Voila, and Plotly.
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µr is the expected range, σr is the standard deviation of possible ranges, µs is the

expected takeoff speed, σr is the standard deviation of possible takeoff speeds. In

robust optimization, each design’s worst case of the range of possibilities in the
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2 Mock-up of Experimental UI

The three reward regions highlighted in the plot are designs with a fuel consump-

tion below 1100 lbs (in blue), designs with failure rate below 10% (in yellow), and

designs with both a fuel consumption below 1200 lbs and a failure rate below 30%

(in green). The ordering of participant’s designs was tracked through a line, with the

most recent points in bright pink and older points in dark purple. A screenshot of
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3 Results from Post-Experimental Survey

A six point Likert scale was used to evaluate the emotional reaction of participants

to the experimental set up. Participants filled out the post-experimental survey im-

mediately after finishing the experiment. Due to small sample size, no statistical

significance was found using a pairwise T-test. . . . . . . . . . . . . . . . . . . . . . 15
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4 Summary Statistics

Significant differences (Pairwise t-test with Holm–Šidák correction, p < 0.05) indi-

cated by an asterisk. “Points” refers to the number of feasible designs generated by

each participant within thirty minutes. “% in R.R.” refers to the percent of nominal-

ized designs per participant that were in any of the regions with financial incentive.

“Pareto” refers to the average number of points found by each participant in each

condition that were on the combined experimental Pareto frontier across all condi-

tions. n = 11 for all conditions except Control, in which n = 10. Shaded region

shows the distribution for each condition, darker between the 25th and 75th per-

centiles. Black dots show medians. ANOVA testing shows significance in all (Points:

p = 0.036, % in R.R.: p < 0.001, Pareto p = 0.006). . . . . . . . . . . . . . . . . . . . 16

5 Distribution of Fuel Consumptions

Solid lines show median of participants’ Pareto frontiers after nominalization. Shaded

regions extend above it to the 75th percentile and below to the 25th. The black

dashed line shows the combined final Pareto frontier, while solid black lines indicate

reward regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6 Distribution of Failure Rates

Solid lines show median of participants’ Pareto frontiers after nominalization. Shaded

regions extend to its right to the 75th percentile and to its left to the 25th. The black

dashed line shows the combined final Pareto frontier, while solid black lines indicate

reward regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

7 Average Excess Failure Rates

Significant differences (Pairwise t-test with Holm–Šidák correction, p < 0.05) in-

dicated by an asterisk. Shaded region shows the distribution for each condition,

darker between the 25th and 75th percentiles. Black dots show medians. ANOVA

testing shows significance across conditions (p < 0.001). . . . . . . . . . . . . . . . . 18
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8 Average Excess Fuel Consumptions

Significant differences (Pairwise t-test with Holm–Šidák correction, p < 0.05) in-

dicated by an asterisk. Shaded region shows the distribution for each condition,

darker between the 25th and 75th percentiles. Black dots show medians. ANOVA

testing shows significance across conditions (p = 0.007). . . . . . . . . . . . . . . . . 18

9 Experimental UI

Screenshot of interface seen by participants of the human-subjects experiment. The

interface was creating using Jupyter Notebook, ipywidgets, Voila, and Plotly. . . . . . 30

33



Journal of Mechanical Design

LIST OF TABLES

1 Practitioner Demographics
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